Abstract
The present research seeks to address the existing problem of university students who manifest different attitudes towards mathematics and the effect this has on their level of academic performance. The objective of the study is to analyze the relationship between students’ mathematical performance and their attitudes towards mathematics. Methodologically, a quantitative research design of correlational and cross-sectional approach was used; in addition, two instruments were applied: one to evaluate academic performance through a non-standardized test, and another to measure attitudes towards mathematics; to a sample of 339 students at the School of Administrative Sciences, Business Management, and Informatics at the State University of Bolivar. The results obtained indicated that the attitudinal factors of motivation, liking and anxiety are directly related to their level of academic performance.
References
Auzmendi Escribano, E. (1992). Las actitudes hacia la matemática-estadística en las enseñanzas media y universitaria. Mensajero.
Berkowitz, L. (1977). Advances in Experimental Social Psychology. (Vol. 10) Academic Press. https://doi.org/10.1016/S0065-2601(08)60101-0
Costello, A. B., & Osborne, J. W. (2018). Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most From Your Analysis. Practical Assessment, Research & Evaluation, 10(7), 1-9.
Chen, C.T., Wang, P.P., Mo, W.J., Zhang, Y.P., Zhou, W., Deng, T.F., Zhou, M., Chen, X.W., Wang, S.Q., Wang, C.X. (2019). Expression profile analysis of prognostic long non-coding RNA in adult acute myeloid leukemia by weighted gene co-expression network analysis (WGCNA). Journal of Cancer, 10(19), 4707-4718. https://doi.org/10.7150/jca.31234.
Deckers, L. (2021). Motivation: Biological, Psychological, and Environmental. Routledge
Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). Sage.
García, A., & López, J. (2020). Actitudes hacia las matemáticas y su relación con el rendimiento académico en estudiantes de secundaria. Revista de Educación, 25(1), 123-140. https://doi.org/10.5354/0718-5276.2020.56870
Gaspard, H., Dicke, A.-L., Flunger, B., Schreier, B., Häfner, I., Trautwein, U., & Nagengast, B. (2018). More value through greater differentiation: Gender differences in value beliefs about math. Journal of Educational Psychology, 110(7), 977-993. https://doi.org/10.1037/edu0000256
Gómez, R., et al. (2022). Actitudes del profesorado hacia las matemáticas y su relación con el rendimiento de los estudiantes. Revista de Educación, 400, 151-174. https://revistascientificas.us.es/index.php/educacion/article/view/16697
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (8th ed.). Cengage Learning.
Hernández, R. (2014). Metodología de Investigación. McGraw-Hill
Jain, A. K., Murty, M. N., & Flynn, P. J. (2019). Data clustering: A review. ACM Computing Surveys, 31(3), 264-323. https://doi.org/10.1145/331499.331504
Johnson, B. (2018). Practical Sampling (3rd ed.). Sage.
OCDE (2018). Resultados PISA 2018. https://www.oecd.org/pisa/publications/pisa-2018-results.htm
Petriz, M., Barona, C., López, R., & Quiroz, J. (2010). Niveles de desempeño y actitudes hacia las matemáticas en estudiantes de la Licenciatura en Administración en una Universidad Estatal Mexicana. Revista Mexicana de Investigación Educativa, 15(47), 1223-1249.
Rodríguez, C., Díaz-Morales, JF, Vanegas, P., & Quiroga M. A. (2018). Diferencias de género en las actitudes hacia las matemáticas: el papel mediador de la autoeficacia. Frontiers in Psychology, 9, 2088. https://doi.org/10.3389/fpsyg.2018.02088
Smith, R., & Johnson, M. (2019). The relationship between attitude toward mathematics and mathematics achievement: A meta-analytic review. Journal of Educational Psychology, 111(1), 1-15. https://doi.org/10.1037/edu0000286
Steele, JR, Cohn, SJ y Hood, M. (2020). Promoción de actitudes positivas hacia las matemáticas: un examen del impacto de las estrategias de enseñanza. Revista de Educación Matemática, 13(2), 54-65.
Suhr, D. (2021). KMO Measure of Sampling Adequacy. In M. R. Encarnación, & S. W. Kee (Eds.), Encyclopedia of Research Design (pp. 1-4). SAGE Publications, Inc.
Tavakol, M., & Dennick, R. (2018). Making sense of Cronbach’s alpha. International Journal of Medical Education, 9, 53-55.
Wang, C., Liu, R., Ding, Y., & Meng, W. (2020). Longitudinal relationships between math anxiety, math self-concept, and math achievement in elementary school. Frontiers in Psychology, 11, 261. https://doi.org/10.3389/fpsyg.2020.00261
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s Statement on p-Values: Context, Process, and Purpose. The American Statistician, 70(2), 129-133.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Claudio José Hidalgo Vargas, Jessica Katherine Gaona Alvarado, Ana Lucia Hidalgo Vargas, Richar Lutter Calderón Zambrano, Esteban Xavier Pérez Villafuerte